Inference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation
نویسندگان
چکیده
منابع مشابه
Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملInference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK in ation
We discuss computational aspects of likelihood-based speci cation, estimation, inference, and forecasting of possibly nonstationary series with long memory. We use the arfima(p; d; q) model with deterministic regressors and we compare sampling characteristics of approximate and exact rst-order asymptotic methods. We extend the analysis using a higher-order asymptotic method, suggested by Cox an...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملInference and Forecasting for ARFIMA Models With an Application to US and UK Inflation
Practical aspects of likelihood-based inference and forecasting of series with long memory are considered, based on the arfima(p; d; q) model with deterministic regressors. Sampling characteristics of approximate and exact first-order asymptotic methods are compared. The analysis is extended using modified profile likelihood analysis, which is a higher-order asymptotic method suggested by Cox a...
متن کامل